Prognosis of Women With Primary Breast Cancer Diagnosed During Pregnancy: Results From an International Collaborative Study

Frédéric Amant, Gunter von Minckwitz, Sileny N. Han, Marijke Bontenbal, Alistair E. Ring, Jerzy Giermek, Hans Wildiers, Tanja Fehm, Sabine C. Linn, Bettina Schlehe, Patrick Neven, Pieter J. Westenend, Volkmar Müller, Kristel Van Calsteren, Brigitte Rack, Valentina Nekljudova, Nadia Harbeck, Michael Untch, Petronella O. Witteveen, Kathrin Schwedler, Christoph Thomssen, Ben Van Calster, and Sibylle Loibl

See accompanying editorial on page 2521; listen to the podcast by Dr Giordano at www.jco.org/podcasts. Processed as a Rapid Communication manuscript

ABSTRACT

Purpose
We aimed to determine the prognosis of patients with breast cancer diagnosed during pregnancy (BCP).

Patients and Methods
In this cohort study, a multicentric registry of patients with BCP (from Cancer in Pregnancy, Leuven, Belgium, and GBG 29/BIG 02-03) compiled pro- and retrospectively between 2003 and 2011 was compared with patients who did not have associated pregnancies, using an age limit of 45 years. Patients with a diagnosis postpartum were excluded. The main analysis was performed using Cox proportional hazards regression of disease-free survival (DFS) and overall survival (OS) on exposure (pregnant or not), adjusting for age, stage, grade, hormone receptor status, human epidermal growth factor 2 status, histology, type of chemotherapy, use of trastuzumab, radiotherapy, and hormone therapy.

Results
The registry contained 447 women with BCP, mainly originating from Germany and Belgium, of whom 311 (69.6%) were eligible for analysis. The nonpregnant group consisted of 865 women. Median age was 33 years for the pregnant and 41 years for the nonpregnant patients. Median follow-up was 61 months. The hazard ratio of pregnancy was 1.34 (95% CI, 0.93 to 1.91; \( P = .14 \)) for DFS and 1.19 (95% CI, 0.73 to 1.93; \( P = .51 \)) for OS. Cox regression estimated that the 5-year DFS rate for pregnant patients would have increased from 65% to 71% if these patients had not been pregnant. Likewise, the 5-year OS rate would have increased from 78% to 81%.

Conclusion
The results show similar OS for patients diagnosed with BCP compared with nonpregnant patients. This information is important when patients are counseled and supports the option to start treatment with continuation of pregnancy.

J Clin Oncol 31:2532-2539. © 2013 by American Society of Clinical Oncology

INTRODUCTION

Breast cancer is one of the most commonly encountered types of malignancy during pregnancy. Approximately 0.2% to 2.6% of all breast cancers occur during pregnancy (BCP). There was a general belief among physicians in the first half of the 20th century that breast cancer, under the stimulus of pregnancy, was especially aggressive, and surgical treatment was pointless and thus contraindicated. Indeed, the gestational physiologic alterations in the breast result in later diagnosis and higher-stage tumors. A comprehensive review from 1953 showed improved survival rates for patients with breast cancer in association with pregnancy, from 0% 10-year survival before 1920 to 22.4% in the period from 1941 to 1950. The survival rates were poorer than in the nonpregnant patients, probably because of the advanced stage of disease and delay in treatment; prompt commencement of treatment was necessary to improve survival rates. Since then, surgical treatment of BCP has become commonplace, and in the last decade, chemotherapy has been introduced and deemed harmful to the fetus.
Whether pregnancy itself negatively influences prognosis remains a subject of debate. We still have no comprehensive understanding of the interaction between pregnancy and breast cancer carcinogenesis. Some studies have shown a poorer prognosis for BCP, whereas others have found similar survival rates when compared with a control group of nonpregnant patients. Up to now, reports on prognosis have had two major limitations, including small cohorts and the pooling of breast cancer diagnosed during and within 1 year after pregnancy (ie, pregnancy-associated breast cancer).

The aim of this study was to estimate the prognostic impact of pregnancy when breast cancer is diagnosed. We recently described the obstetric and neonatal outcomes of BCP. Here, we used this series to compare survival between women with BCP and patients who did not have associated pregnancies.

**PATIENTS AND METHODS**

**Design, Setting, and Participants**

Two international multicenter cohort studies collaborated in this initiative. The German Breast Group (GBG) started a registration study for breast cancer during pregnancy in April 2003. In addition, although separately, the international Cancer in Pregnancy (CIP) study (www.cancerinpregnancy.org) started a registry in 2005 for all types of cancer diagnosed during pregnancy. All registered patients diagnosed with primary BCP between January 1, 2000, and September 30, 2011, were eligible for inclusion, independent of outcome of the pregnancy or treatment of breast cancer. Women with in situ or primary metastatic disease and those relapsing during pregnancy were excluded from all analyses. Women who became pregnant during treatment or received their diagnosis postpartum were also excluded to ensure homogeneity. We compared the patients of both registries to prevent double entries.

Both observational studies were approved by ethics committees, and written informed consent was obtained from patients before prospective inclusion. As regards the retrospective part, a majority of patients were registered without obtaining informed consent. Details on the construct and quality assurance can be found in the Appendix (online only). The studies were registered with ClinicalTrials.gov (CIP study, NCT00196833; GBG study, NCT00196833).

For the nonpregnant comparison group, we recruited all nonpregnant patients with stage I to III disease from the institutional database of the Multidisciplinary Breast Centre, University Hospitals Leuven, Leuven, Belgium, age ≤ 45 years, between January 1, 2000, and August 1, 2010 (n = 865).

**Clinical Assessment**

The patients’ disease was staged using the American Joint Committee on Cancer staging system (seventh edition). Diagnosis was made by a combination of ultrasonography, mammography, and/or magnetic resonance imaging, followed by core needle biopsy.

Type of treatment was decided by the patient’s treating physician. To standardize treatment, treatment guidelines were made available by expert opinion reports. Both first and senior authors initiated multidisciplinary consensus meetings to construct international guidelines on the treatment of BCP. Whether chemotherapy was administered during pregnancy depended on the gestational age and stage of disease.

Chemotherapy dosages were equal to those for the nonpregnant patients and were based on body surface area. Additional therapies (also administered in the postpartum period), such as trastuzumab, endocrine treatment, and radiation therapy, were collected for all patients. Patient status as of December 31, 2011, was determined by reviewing medical records of patients as well as follow-up requested from the treating physicians, if they were treated elsewhere. We used a predefined case-registration follow-up form, including date of diagnosis, tumor pathologic features, oncologic treatment (including type of surgery and use of chemotherapy, radiotherapy, endocrine therapy, and trastuzumab), and patient outcome (including time and site of metastasis and survival status). For the pregnant patients, gestational age was calculated from the estimated due date, based on first-trimester ultrasound examination when performed, or from the last menstrual period.

Primary outcome was disease-free survival (DFS), defined as time in months from the date of first diagnosis to any invasive locoregional (ipsilateral breast, local/regional lymph nodes) recurrence of disease, any invasive contralateral breast cancer, any distant recurrence of disease, or any secondary malignancy, whichever occurred first. Patients without events were censored at the date of last contact. Secondary outcome was overall survival (OS), defined as time in months from the date of first diagnosis to death resulting from any cause.

**Statistical Analysis**

Missing values were imputed once using the method of chained equations to avoid bias and increase efficiency. DFS and OS were compared between pregnant and nonpregnant patients using multivariable Cox proportional hazards regression to adjust for age at diagnosis, stage, grading, histologic tumor type, estrogen receptor (ER)/progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, trastuzumab type, chemotherapy, radiotherapy, and hormone therapy.

Given that the average age at diagnosis was clearly different for pregnant and nonpregnant patients, simply adjusting for age by using age as a covariate may not have been sufficient. Instead, we adjusted for age using inverse probability weighting to statistically correct for the strong imbalance in this variable. We estimated the probability of being pregnant according to age ($P_{\text{pregnant}}$) for the patients in the data set. The appropriate transformation of age was determined with the method of fractional polynomials. The weights used in the Cox model were one for pregnant patients and the odds of $P_{\text{pregnant}}$ for nonpregnant patients to avoid large and unstable weights. This approach succeeded in overcoming the age imbalance, because we observed that the weighted distribution of age was nearly identical for pregnant and nonpregnant patients. A sensitivity analysis in which we adjusted for age using stratification instead of weighting yielded similar results.

Because pregnant patients were recruited in seven countries, we investigated the influence of country by checking the interaction of pregnancy with country (Belgium, Germany, other [including the Netherlands, United Kingdom, Czech Republic, Poland, and Italy]). Exploratory prespecified subgroup analyses were performed by adding interaction terms. Subgroups investigated were ER/PR status, molecular subtype, age, American Joint Committee on Cancer stage, and type of chemotherapy. Finally, one additional analysis compared pregnant patients with nulliparous nonpregnant patients only. All analyses were performed using the SAS statistical software package (version 9.2; SAS Institute, Cary, NC), making use of IVEware (version 0.2; http://www.isr.umich.edu/src/smp/ive/) for imputation of missing values.

There were 447 women with BCP registered, of whom 311 were eligible for this analysis (we excluded three women age ≥ 46 years, 36 with primary metastatic disease, 57 diagnosed before 2000, and 40 without follow-up); 240 (77.2%) of 311 patients were included prospectively. These 311 patients were compared with 865 women with breast cancer who were not pregnant (ratio 1:2.78). Demographic features are summarized in Table 1. Distribution of pregnant patients among seven European countries was as follows: Germany, n = 137 (44.05%); Belgium, n = 77 (24.76%); the Netherlands, n = 65 (20.90%); Great Britain, n = 10 (3.22%); Poland, n = 10 (3.22%); Czech Republic, n = 10 (3.22%); and Italy, n = 2 (0.64%). Median age was 33 years (interquartile range, 31 to 36) for the pregnant and 41 years (interquartile range, 38 to 44) for the nonpregnant patients. Median follow-up was 61 months (1 year, 1 month; range, 4 to 135 months).
Treatment

Type of treatment is depicted in Table 2. Among the pregnant patients, taxanes were administered to 95 (47.03%) with adjuvant chemotherapy and to 69 (71.13%) with neoadjuvant chemotherapy. Among the nonpregnant patients, taxanes were administered to 168 (30.88%) with adjuvant chemotherapy and to 79 (77.45%) with neoadjuvant chemotherapy. Within the BCP group, 200 patients (64.31%) received chemotherapy during pregnancy, all in the second or third trimester.

Survival

During follow-up, 42 pregnant patients (14%) and 103 nonpregnant patients (12%) died. For the total group (pregnant and nonpregnant patients together), median follow-up for DFS was 61 months. Observed 5-year DFS was 78%, and median DFS time was 131 months. Observed 5-year OS was 87%; median OS time was not reached within the time frame of the study (Fig 1). Table 3 summarizes the effect of pregnancy from the multivariable Cox proportional hazards regression of DFS and OS, adjusted for age at diagnosis, stage, grading, histologic tumor type, ER/PR status, HER2, trastuzumab, and chemotherapy. We did not find evidence of worse prognosis for women diagnosed with BCP regarding disease recurrence (hazard ratio [HR], 1.34; 95% CI, 0.93 to 1.91; \( P = .14 \)) or OS (HR, 1.19; 95% CI, 0.73 to 1.93; \( P = .51 \)). The average 5-year DFS probability based on the multivariable model was 65% for pregnant patients; it would have increased to 71% if these patients had not been pregnant. Likewise, the average 5-year OS probability was 78% for pregnant patients; it would have increased to 81% if these patients had not been pregnant. The sensitivity analysis using stratification rather than weighting for age to account for the strong age differences between pregnant and nonpregnant patients was not done.

Table 1. Clinicopathologic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pregnant Patients (n = 311)</th>
<th>Nonpregnant Patients (n = 865)</th>
<th>Missing Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>AJCC stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>15.4</td>
<td>263</td>
</tr>
<tr>
<td>2</td>
<td>177</td>
<td>56.9</td>
<td>399</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>27.7</td>
<td>203</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2.3</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>21.5</td>
<td>307</td>
</tr>
<tr>
<td>3</td>
<td>237</td>
<td>76.2</td>
<td>489</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDA</td>
<td>97.4</td>
<td>91.0</td>
<td></td>
</tr>
<tr>
<td>ILA</td>
<td>2.6</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>ER and/or PR positive</td>
<td>46.6</td>
<td>74.5</td>
<td>0</td>
</tr>
<tr>
<td>HER2 positive</td>
<td>31.8</td>
<td>17.0</td>
<td>12</td>
</tr>
<tr>
<td>Triple negative</td>
<td>37.9</td>
<td>19.1</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE: Descriptive statistics are reported after imputation of missing values. Abbreviations: AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IDA, invasive ductal carcinoma; ILA, invasive lobular carcinoma; PR, progesterone receptor.

Table 2. Breast Cancer Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pregnant Patients (n = 311)</th>
<th>Nonpregnant Patients (n = 865)</th>
<th>Missing Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>2</td>
<td>0.6</td>
<td>10</td>
</tr>
<tr>
<td>Breast conserving</td>
<td>140</td>
<td>45.0</td>
<td>433</td>
</tr>
<tr>
<td>Mastectomy</td>
<td>147</td>
<td>47.3</td>
<td>422</td>
</tr>
<tr>
<td>Chemotherapy setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>4</td>
<td>1.3</td>
<td>219</td>
</tr>
<tr>
<td>Adjuvant</td>
<td>208</td>
<td>66.9</td>
<td>544</td>
</tr>
<tr>
<td>Neoadjuvant</td>
<td>99</td>
<td>31.8</td>
<td>102</td>
</tr>
<tr>
<td>During pregnancy</td>
<td>200</td>
<td>64.3</td>
<td></td>
</tr>
<tr>
<td>Taxanes</td>
<td>169</td>
<td>54.3</td>
<td>247</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>76</td>
<td>24.8</td>
<td>140</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>205</td>
<td>73.3</td>
<td>768</td>
</tr>
<tr>
<td>Endocrine therapy</td>
<td>117</td>
<td>41.5</td>
<td>580</td>
</tr>
</tbody>
</table>

Amant et al

© 2013 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Downloaded from ascopubs.org by University of Louisville on March 26, 2017 from 136.165.238.131
Copyright © 2017 American Society of Clinical Oncology. All rights reserved.
nonpregnant patients confirmed these results. There was no clear effect of country of origin of pregnant patients (interaction pregnancy-country \( P = .61 \) for DFS and \( .26 \) for OS; Fig 2). However, the effects were smallest for pregnant patients from Belgium (HR, 1.10 for DFS and 0.98 for OS). The main Cox model resulted in an average predicted 5-year DFS probability of 65% for pregnant patients. According to the model, this would have increased to 71% if these patients had not been pregnant (but all other characteristics were identical). For OS, the average predicted 5-year survival probability would have increased from 78% to 81%.

The subgroup analyses did not suggest clear effects (Fig 2). When comparing pregnant patients with nulliparous nonpregnant patients (\( n = 200; 23.1\% \)), no differences were found for DFS (HR, 1.58; 95% CI, 0.93 to 2.77) or OS (HR, 1.58; 95% CI, 0.76 to 3.52). The lack of a prognostic effect of pregnancy was present both in the GBG and CIP groups.

**DISCUSSION**

We documented the prognosis of BCP in the largest series, to our knowledge, collected within the framework of a European collabora-
tion. Tumor characteristics were comparable to other reported results of BCP. Poorly differentiated invasive ductal adenocarcinomas were prevalent and often hormone receptor negative. After adjusting for known prognostic factors, we found a modest, if any, effect of pregnancy on DFS and OS. Regarding the DFS analysis, the observed HR of 1.34 suggests better outcome for the nonpregnant group; however, the CI shows that any distinct effect of pregnancy cannot be concluded. Also, the observed HR for OS was only 1.19. This reassuring effect was especially true for the Belgian and German patients (Fig 2). The largest difference was seen in the countries that contributed with lower numbers of patients with BCP. The effect of patient load on the outcome therefore deserves further investigation. The results of this study allow clinicians to inform patients with BCP on their prognosis, if receiving a standard therapy.

The prognosis of BCP has previously been addressed in several studies. We encountered 11 studies that did not distinguish between breast cancer diagnosed during pregnancy or during the postpartum/lactation period, and these are not discussed further. We reviewed 17 studies published since 1985 that have made a subdifferentiation between breast cancer during and after pregnancy (\( n = 6 \))\(^{11,12,14,17-20} \); six found worse survival for the patients with BCP; three observational studies did not comment further on BCP prognosis (Table 4). Putative factors for worse prognosis included delayed diagnosis and delayed or modified cancer treatment to assure the birth of a healthy infant. Also, the pregnancy state with immunosuppression, increased vascularization, and increased hormonal exposure have been postulated as contributing factors. During pregnancy, significantly increased concentrations of estrogen, progesterone, and insulin-like growth factor 1 are present. These hormones are highly linked to breast cancer development and progression. However, on the basis of our results, these factors do not seem to contribute significantly to tumorigenesis or accelerated growth in vivo, as previously thought. Our findings are in agreement with those of Schedin and Lyons et al, who hypothesized that mammary gland involution, rather than pregnancy per se, was crucial for breast cancer growth. The postpartum or postlactation breast involution relies on tissue-remodeling processes of wound healing and inflammation that also have a pro-oncogenic effect and promote tumor-cell dissemination. Thus, postpartum breast cancer rather than BCP carries a worse prognosis. How long this increased risk persists in the postpartum period has not been identified; the effect has been reported as continuing up to 10 years before a cross-over effect occurs, and the previous pregnancy becomes a protective factor. Also, for first-time mothers age > 35 years, the risk is permanently increased when compared with nulliparous women. The fact that the majority of our nonpregnant patients were parous (76.9%) might be regarded as a confounding factor, because we did not take time since last pregnancy into account. However, as suggested by Borges and Schedin, we also compared pregnant patients with nulliparous nonpregnant patients (23.1%), and no differences in DFS or OS were found.

Gestational physiologic changes alter the pharmacokinetics of chemotherapy during pregnancy. In a pilot study, we calculated that...
Fig 2. Forest plots with results of the effect of country of origin of pregnant patients and of prespecified subgroup analyses for (A) disease-free and (B) overall survival. AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; PR, progesterone receptor.
for four cytotoxic drugs, including anthracyclines and taxanes, maximum concentration and the area under the curve were lower in pregnant women. Although these alterations may theoretically influence maternal prognosis, we decided in an international consensus meeting focused on BCP that until more data are available, chemotherapy dosages for pregnant women should be calculated based on actual height and weight. A previous analysis of our cohort showed that among the patients with BCP, survival rates did not differ between those who received chemotherapy during pregnancy and those who did so during the postpartum period. The similar outcomes calculated in this series between pregnant (64% of patients received chemotherapy compared to nonpregnant patients) during and after pregnancy (percentages specified), results of DFS and OS for postpartum and lactating patients with breast cancer are not shown, because this was not the aim of our study. 

Apart from maternal safety, fetal safety is also considered when patients are counseled. Breast cancer treatment during pregnancy does not jeopardize maternal prognosis. We found similar survival for patients with primary breast cancer diagnosed during pregnancy, when compared with nonpregnant patients with breast cancer, after adjusting for known prognostic factors. Although all authors completed the disclosure declaration, the following author(s) and/or an author’s immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “U” and an asterisk were disclosed to the society, and the society determined that there would be no financial conflict of interest.

In conclusion, in the largest cohort study to date, to our knowledge, we found similar survival for patients with primary breast cancer diagnosed during pregnancy, when compared with nonpregnant patients with breast cancer, after adjusting for known prognostic factors. The observation that patients with BCP experience survival rates comparable to those of nonpregnant patients is important when they are counselled. Breast cancer treatment during pregnancy does not jeopardize maternal prognosis.
Provision of study materials or patients: Frédéric Amant, Marijke Bontenbal, Alistair E. Ring, Jerzy Giermek, Hans Wildiers, Tanja Fehm, Sabine C. Linn, Bettina Schlehe, Patrick Neven, Pieter J. Westenend, Volkmar Müller, Kristel Van Calsteren, Brigitte Rack, Nadia Harbeck, Michael Untch, Petronella O. Witteveen, Christoph Thomssen, Sibylle Loibl

Collection and assembly of data: Frédéric Amant, Gunter von Minckwitz, Sileny N. Han, Jerzy Giermek, Tanja Fehm, Sabine C. Linn, Bettina Schlehe, Patrick Neven, Pieter J. Westenend, Volkmar Müller, Brigitte Rack, Valentina Nekljudova, Nadia Harbeck, Michael Untch, Petronella O. Witteveen, Kathrin Schwedler, Christoph Thomssen, Sibylle Loibl

Data analysis and interpretation: Frédéric Amant, Gunter von Minckwitz, Sileny N. Han, Marijke Bontenbal, Alistair E. Ring, Hans Wildiers, Patrick Neven, Kristel Van Calsteren, Brigitte Rack, Valentina Nekljudova, Nadia Harbeck, Ben Van Calster, Sibylle Loibl

Manuscript writing: All authors

Final approval of manuscript: All authors

REFERENCES


AUTHOR CONTRIBUTIONS

Conception and design: Frédéric Amant, Gunter von Minckwitz, Sileny N. Han, Valentina Nekljudova, Ben Van Calster, Sibylle Loibl

Financial support: Frédéric Amant, Gunter von Minckwitz, Sibylle Loibl

Administrative support: Frédéric Amant, Gunter von Minckwitz, Sibylle Loibl

Other Remuneration: None
Affiliations

Frédéric Amant, Sileny N. Han, Hans Wildiers, Patrick Neven, Kristel Van Calsteren, and Ben Van Calster, University Hospitals Leuven and Katholieke Universiteit Leuven, Leuven, Belgium; Gunter von Minckwitz, Valentina Nekljudova, and Sibylle Loibl, German Breast Group, Neu-Isenburg; Tanja Fehm, University Women’s Hospital Tübingen, Tübingen; Bettina Schlehe, University Women’s Hospital Heidelberg, Heidelberg; Volkmar Müller, University Medical Center Hamburg-Eppendorf, Hamburg; Brigitte Rack, Ludwigs Maximilian University, München; Nadia Harbeck, University Women’s Hospital Cologne, Cologne; Michael Untch, HELIOS Kliniken, Berlin Buch; Kathrin Schwedler, University Hospital Frankfurt, Frankfurt am Main; Christoph Thomssen, Martin Luther Universität, Halle an der Saale, Germany; Marijke Bontenbal, Erasmus MC–Daniel den Hoed Cancer Centre, Rotterdam; Sabine C. Linn, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam; Pieter J. Westenend, Laboratory for Pathology, Dordrecht; Petronella O. Witteveen, University Medical Centre Utrecht, Utrecht, the Netherlands; Alistair E. Ring, Brighton and Sussex Medical School, Royal Sussex County Hospital, Brighton, United Kingdom; Jerzy Giermek, Institute in Warsaw Breast Cancer and Reconstructive Surgery Clinic, Warsaw, Poland; and Kathrin Schwedler, Luzerner Kantonsspital, Luzern, Switzerland.

2013 Breast Cancer Symposium

Each year, ASCO, in conjunction with our cosponsors, organizes a wide array of high-quality meetings, providing educational and scientific programs to advance your understanding of cancer. Join us for one or more of ASCO’s meetings to interact with oncology experts, network with colleagues, and earn CME credit.

The 2013 Breast Cancer Symposium (Saturday, September 7 through Monday, September 9, San Francisco, CA) will offer multidisciplinary discussions among medical oncologists, radiation oncologists, and surgeons on the importance of understanding and incorporating the latest research to strengthen collaborative breast cancer treatment approaches. The Meeting is cosponsored by ASBD, ASBrS, ASCO, ASTRO, NCBC, and SSO.

For more information, visit breastcasym.org.
Acknowledgment

We thank all contributors to the registries as well as Anne-Sophie Dieudonné, research fellow from Katholieke Universiteit Leuven, who assisted with control patients.

Appendix

List of Investigators

**Belgium.** L. Van Eycken (Belgian Cancer Registry, Brussels); F. De Smet (National Alliance of Christian Sickness Funds); P. Berteloot, M.R. Christiaens, P. Clement, R. Devlieger, M. Hanssens, J. Verhaeghe (University Hospitals Leuven, Leuven); V. Cocquyt, H. De Pypere, F. Hauspy, R. Serreyen, M. Petrick, R. Van Den Broecke (University Hospital Gent); V. Ballegeer, S. Balliu, J. Botterman, H. Denys, H. Loobuyck, I. Martens, A. Ongena, V. Renard, M. Verpoest (AZ Sint-Lucas, Gent); W. Declerq, D. Houben, I. Samyn (AZ Jan Palfijn, Gent); T. Hendrix (Gezondheidszorg Oostkust, Knokke); S. Boes, C. Dens, A. Maes (Jessa Hospital, Hasselt); F. Cardoso, N. Florence, V. D’Hondt (Bordet Institute, Brussels); J. De Hemptinne (Clinique Edith Cavell, Brussels); J. Vanderheyden, L. Dirix, H. Verstraete, P. Van Dam (GZA Ziekenhuizen, Antwerpen); S. Altintas, M. Peeters (Antwerp University Hospital, Antwerpen); M. Wauters (Clinique Notre Dame de Tournai, Tournai); M. De Vylder, M. Berlie, C. Hubinont, Y. Humblet, J.-P. Machiels, F. Mazzeo, S. Vanderlinden (University Hospital St-Luc, Brussels, Belgium); D. Bauwens, H. Vernaeye, X. De Muylter (Clinique Saint-Jean, Brussels); A. De Craene, X. Elzo Kraemer (AZ Maria Middelares, Gent); P. Bindels (Centre Hospitalier de l’Ardenne, Libramont); F. Liebens, C. Martinez, A. Pastijn, P. Barlow (CHU Saint-Pierre, Brussels); F. Majois, P.F. Guilmot (Hôpital de Jolimont, Jolimont); K. Wuyts (H. Hartziekenhuis, Lier); K. Van Eygen (AZ Groeninge, Kortrijk); C. Gautier (Clinique Notre-Dame de Grâce de Gosselies, Gosselies); F. Gielen, C. Confente (C.H.R. Haute Sene, Soignies); J. Aerts, P. Breat, M. Martens (AZ Turnhout, Turnhout); D. Verhoeven (AZ Klin, Brasschaat); M. Top, J.-L. Canon (Centre Hospitalier Notre Dame et Reine Fabiola, Charleroi); J. Greindl (Hôpital Chirec, Braine-l’alleud); F. Buxant, V. Richard, D. Thomas (Hôpital Erasme and Hôpital d’Ixelles, Brussels); A. Spaepen (Sint-Jozefkliniek, Bornem); C. De Rop, L. Lannoo (Imeldaziekenhuis, Bonheiden); G. Debrock, J. Vlasselaer (Ziekenhuis Oost-Limburg, Genk); V. Deyaert (H. Hartziekenhuis Leuven, Leuven); J. Renard (Sint-Vincentiusziekenhuis, Mortsel); B. Vandermeersch (Clinique Ste-Anna St-Remi, Anderlecht); E. Debrouwere (Sint-Jozefkliniek, Izegem); K. Traen (Onze-Lieve-Vrouwziekenhuis, Aalst); D. Debarei, I. Vanderbeke (Jan Yperman Ziekenhuis, Ieper).

The Netherlands. P.O. Ottevanger, M.EA Spaanderman (University Medical Center St Radboud, Nijmegen); J.W.R. Notertier (Leiden University Medical Center, Leiden); E. Balk, R. Laan, R.A.K Samal, G.A. Velders (Ziekenhuis Gelderse Vallei, Ede); P.M. Geomini (Maxima Medical Center, Eindhoven); C.M.W.H. Smeets, E.W. Muller (Slingeland Ziekenhuis, Doetinchem); C. Schröder (University Medical Center Groningen); G.J. Oosterhuis (Medisch Spectrum Twente, Enschede); M.J. Duk, H.J. Bloemendal (Meander Medisch Centrum, Amersfoort); F.J.H. van den Wildenberg (Canisius-Wilhelmina Ziekenhuis, Nijmegen); M. Scheuer, M. Temizkan (St-Jansdal, Harderwijk); P.D. de Rooij, A.M. Van Heusden (Maasstad Ziekenhuis, Rotterdam); A. Willig, P.J. den Haan (St. Jans Gasthuis, Weert).

Germany. M. Lenhard (Klinikum der Universität München/Klinikum Großhadern); K. Lübke (Henriettenstiftung Hannover); D. Augustin (Klinikum Deggendorf); C. Volz (HELIOS Klinikum Berlin Buch); O. Orthmann (Caritas-Krankenhaus St Josef Regensburg); S. Raupp (Ev. Diakonissen Krankenhaus Dresden); C. Weiss (Technische Universität Dresden); U. Kaeesch (Städt. Krankenhaus Heinsberg); I. Bauerfeind (Klinikum Landschat); H. Eitdman, C. Mundhenke (Universitätsklinikum Schleswig-Holstein Kiel); C. Waldhör (Klinikum Rosenheim); S. Raupp (Ev. Diakonissenklinik Karlsruhe).

Czech Republic. M. Halaska (Second Medical Faculty, Charles University, Prague).

United Kingdom. A. Robinson (Southend University Hospital, NHS, Westcliff-on-Sea).